SHM Past Paper Questions

 Name1. Which one of the following statements is true when an object performs simple harmonic motion about a central point O ?

A The acceleration is always away from O .
B The acceleration and velocity are always in opposite directions.
C The acceleration and the displacement from O are always in the same direction.
D The graph of acceleration against displacement is a straight line.
2. A ball bearing rolls on a concave surface, as shown in the diagram, in approximate simple harmonic motion. It is released from \mathbf{A} and passes through the lowest point \mathbf{B} before reaching \mathbf{C}. It then returns through the lowest point \mathbf{D}. At which stage, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, does the ball bearing experience maximum acceleration to the left?

3. A body moves with simple harmonic motion of amplitude A and frequency $\frac{b}{2 \pi}$.

What is the magnitude of the acceleration when the body is at maximum displacement?
A zero
B $4 \pi^{2} A b^{2}$
C $A b^{2}$
D $\frac{4 \pi^{2} A}{b^{2}}$
4. Which one of the following gives the phase difference between the particle velocity and the particle displacement in simple harmonic motion?

A $\quad \frac{\pi}{4} \mathrm{rad}$
B $\quad \frac{\pi}{2} \mathrm{rad}$
C $\quad \frac{3 \pi}{4} \mathrm{rad}$
D $\quad 2 \pi \mathrm{rad}$
5. (a) A body is moving with simple harmonic motion. State two conditions that must be satisfied concerning the acceleration of the body.
condition 1 \qquad
\qquad condition 2 \qquad
\qquad
(b) A mass is suspended from a vertical spring and the system is allowed to come to rest. When the mass is now pulled down a distance of 76 mm and released, the time taken for 25 oscillations is 23 s .

Calculate
(i) the frequency of the oscillations,
\qquad
\qquad
(ii) the maximum acceleration of the mass,
\qquad
\qquad
(iii) the displacement of the mass from its rest position 0.60 s after being released. State the direction of this displacement.
\qquad
\qquad
\qquad
\qquad
(c)

Figure 1
Figure 1 shows qualitatively how the velocity of the mass varies with time over the first two cycles after release.
(i) Using the axes in Figure 2, sketch a graph to show qualitatively how the displacement of the mass varies with time during the same time interval.

Figure 2
(ii) Using the axes in Figure 3, sketch a graph to show qualitatively how the potential energy of the mass-spring system varies with time during the same time interval.

Figure 3

